### LESSON 1-3

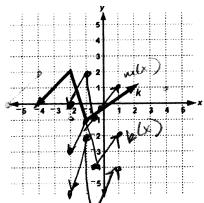
# Transformations of Function Graphs

## Practice and Problem Solving: A/B

Let g(x) be the transformation of f(x). Write the rule for g(x) using the change described.

1. reflection across the y-axis followed by a vertical shift 3 units up

2. horizontal stretch by a factor of 5 followed by a horizontal shift right 2 units


3. vertical compression by a factor of  $\frac{1}{\alpha}$  followed by a vertical shift down 6 units

4. reflection across the x-axis followed by a vertical stretch by a factor of 2, a horizontal shift 7 units left, and a vertical shift 5 units down

g(x) = -2f(x+7) - 5

Use the graph to perform each transformation.

Coloredi.



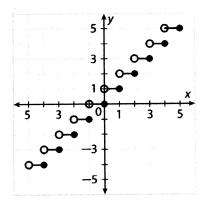
5. Transform y = k(x) by compressing it horizontally by a factor of  $\frac{1}{2}$ . Label the new function m(x). Which coordinate is multiplied by  $\frac{1}{2}$ ?

6. Transform y = k(x) by translating it down 3 units. Label the new function p(x). What happens to the y-coordinate in each new ordered pair?

Substract

7. Transform y = k(x) by stretching it vertically by a factor of 2. Label the new function q(x). Which coordinate is multiplied by 2?

8. Describe how the coordinates of a function change when the function is translated 2 units to the left and 4 units up.


# LESSON 1-3

## **Transformations of Function Graphs**

### Practice and Problem Solving: C

Recall the graph of the ceiling function  $f(x) = \lceil x \rceil$ , shown. The following situation describes a transformation of f(x):

To rent a concert hall for one hour costs \$40 plus an initial cleaning fee of \$120. There is a charge of \$40 for every additional hour or fraction of an hour thereafter.

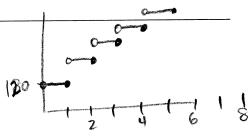


#### Use the description for Problems 1-6.

1. Write a transformation function g(x) in terms of f(x) describing the cost of renting the concert hall.

q(x) = 40f(x) +120

2. Graph g(x). Show the rental cost for up to 8 hours.

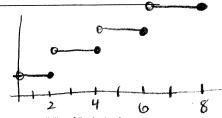

740 + 200

160,

3. Describe the effect on the graph of g(x) if the cleaning fee were changed to \$80. Then write a transformation function h(x) in terms of g(x) based on this situation.

 $\frac{h(x) = g(x) - 40}{9(x)^{2} + 40}$ 

4. Graph h(x). Show the rental cost for up to 8 hours.




5. Describe the effect on the graph of g(x) if the rental fees were changed to \$40 for every 2 hours. Then write a transformation function j(x) in terms of g(x) based on this situation.

horizontal Stretch

g(x) = f[1(x)] + 120

6. Graph j(x). Show the rental cost for up to 8 hours.

